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Abstract
The estimation of kinetic parameters directly from

projection data is potentially useful for clinical dynamic
cardiac SPECT studies, particularly those using a single
detector system or body contouring orbits with a multi-detector
system. A dynamic image sequence reconstructed from the
inconsistent projections acquired by a relatively slowly rotating
gantry can contain artifacts that lead to biases in kinetic
parameters estimated from time-activity curves generated by
overlaying regions of interest on the images. Using simulated
data we have shown that unbiased kinetic parameter estimates
can be obtained directly from the projections.

Here we present results of a99mTc-teboroxime patient
study where the regions of the left ventricular myocardium,
blood pool, liver, and background tissue were determined
by automatically segmenting a dynamic image sequence
reconstructed from the inconsistent projection data. A
spatial model for the projections was then created and one
compartment kinetic model parameters for the myocardium
and liver were estimated directly from the projections.

I. I NTRODUCTION

Conventional analysis of dynamically acquired nuclear
medicine data involves fitting kinetic models to time-activity
curves generated by overlaying regions of interest on a
temporal sequence of reconstructed images. Since dynamic
single photon emission computed tomography (SPECT)
data acquisition involves gantry motion and the distribution
of radiopharmaceutical changes during the acquisition,
projections at different angles come from different tracer
distributions. Images reconstructed from these inconsistent
projections can contain artifacts that lead to biases in the
estimated kinetic parameters.

To overcome this problem we have been investigating
the estimation of kinetic parameters directly from projection
data by modeling the spatial and temporal distribution of the
radiopharmaceutical within the SPECT field of view. Using
simulated data we have shown that unbiased kinetic parameter
estimates can be obtained directly from the projections [1, 2].

This approach is potentially useful for clinical studies,
particularly in those clinics which have only single detector
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SPECT systems and thus are not able to perform rapid
tomographic acquisitions. Even with a three-detector system,
a patient study that utilizes body contouring orbits can take
45–60 sec to obtain one full tomographic acquisition. Thus,
the estimation of kinetic parameters directly from projection
data may be useful for multi-detector SPECT systems in some
cases.

Here we present results of a99mTc-teboroxime patient
study where the regions of the left ventricular myocardium,
blood pool, liver, and background tissue were determined
by automatically segmenting a dynamic image sequence
reconstructed from the inconsistent projection data. A
spatial model for the projections was then created and one
compartment kinetic model parameters for the myocardium
and liver were estimated directly from the projections.

II. DATA ACQUISITION

A dynamic cardiac patient SPECT study was performed at
the University of Utah Medical Center. Data were acquired
using a Picker PRISM 3000XP three-detector SPECT system.
First, a transmission scan was performed: 65 cm focal length
fan-beam collimators were mounted to each detector and
120 transmission projections of 64×64 images were acquired
over 360◦ using a153Gd line source as the transmission source.
Then, the fan-beam collimators were replaced with parallel
collimators for the dynamic cardiac SPECT study. Vasodilation
was induced pharmacologically using adenosine. A 15 min
dynamic acquisition obtaining 120 projections over 360◦ every
10 sec was initiated at the same time as the injection of 25 mCi
of 99mTc-teboroxime. About 4.8 million emission events were
acquired.

III. A UTOMATED VOLUME OF INTEREST

SPECIFICATION

The attenuation map was reconstructed from the truncated
transmission data using 20 iterations of the transmission
iterative ML-EM algorithm. The transmission data were
registered to the emission data with the aid of three
radioactive markers placed externally around the thorax.
Dynamic emission images with attenuation correction
were reconstructed using 20 iterations of the iterative
ML-EM algorithm. Each of the 90 ten-second frames was
composed of 18 contiguous 7.12 mm-thick transverse images.
Each transverse image was 64×64 pixels, with pixel size
7.12×7.12 mm.
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Figure 1: (Left) Contours obtained by taking a transverse cross section through automatically extracted body, liver, and left ventricular surfaces
are overlaid upon the corresponding image in the temporally smoothed dataset. (Right) Anterior view of the surfaces, with semi-transparent
body and left ventricle. Volume elements lying inside the left ventricular endocardium were used as the blood pool.

The left ventricular myocardium and the liver
were enhanced by first temporally smoothing the
64×64×18×90 emission image dataset with a spline
approximation [3] to a Gaussian filter having a standard
deviationσt = 1.2 time frames (support 1×1×1×7 pixels along
thex, y, z, andt axes, respectively). A 3×3×3×1 gray-scale
morphological opening operator [4] was then applied to
reduce small-scale noise structures, while preserving intensity
transitions associated with myocardial and liver uptake.

The background activity in the body was enhanced by first
subtracting the temporally smoothed image dataset from the
original image dataset and taking the absolute value. To obtain
a more uniform background, each resulting pixel was then
normalized by the square root of its value in the temporally
smoothed dataset and a 3×3×3×1 gray-scale morphological
closing operator [4] was applied to fill in small-scale low
intensity regions.

The enhanced 64×64×18×90 image datasets were then
processed using the 4-D version of an edge detection operator
which we have used previously to segment body and lung
surfaces automatically in respiratory gated PET transmission
images [5, 6]. The edge detection operator estimates the second
derivative in the direction of the 4-D image intensity gradient,
weighted by the gradient magnitude squared:
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wherex1, x2, and x3 denote the spatial coordinates andx4

denotes the temporal coordinate. Zero-crossing points in the
second directional derivative correspond to local extrema in
the image intensity gradient magnitude. Among these are the
points that lie on the boundaries or edges between relatively

homogeneous regions delineated with adequate contrast.

The first and second order partial derivatives needed to
calculate equation (1) were estimated by convolving the
images with spline approximations [3] to Gaussian derivative
filter kernels that smooth the images prior to performing
differentiation. The enhanced myocardium/liver image
dataset was processed using kernels with support 7×7×7×31
(σx =σy =σz = 1.2 pixels,σt = 4.6 time frames). The enhanced
background image dataset was processed using kernels
with support 15×15×15×31 (σx =σy =σz = 2.3 pixels,
σt = 4.6 time frames).

After discarding the results from the first and last two
transverse sections, which contained artifacts due to the
boundary effects of the image processing, potentially
interesting anatomical surfaces were constructed automatically
by linking together the zero-crossing points in the second
directional derivative operator output at time frame 31,
corresponding to 5 min post-injection. Figure 1 shows the
body, liver, and left ventricular surfaces extracted automatically
from the dynamic SPECT image dataset at time frame 31.
Volume elements lying inside the left ventricular endocardium
were used as the blood pool. The segmentation took about
8 min on a 150 MHz MIPS R10000-based Silicon Graphics O2
workstation.

IV. ESTIMATION OF KINETIC PARAMETERS

DIRECTLY FROM PROJECTIONS

We formulate a nonlinear estimation problem using a
spatial and temporal parametrization of the time-varying
distribution measured with a rotating gantry SPECT system.
The one compartment model shown in Figure 2 is assumed for
myocardial and liver tissue with a known blood input function,
which would correspond to the kinetics of teboroxime [7, 8, 9].
Parameters are estimated by minimizing a weighted sum of
squared differences between the projections and the model
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Figure 2: Compartmental model for99mTc-teboroxime in the
myocardium.

predicted values.

The expression for activity in tissue typem is

Qm(t) = Qm
0 e−km

12t + km
21

∫ t

0

B(τ)e−km
12(t−τ)dτ

= Qm
0 Um(t) + km

21V
m(t),

(2)

whereQm
0 is the initial activity due to a prior injection (if any),

B(t) is the blood input function,km
21 is the uptake parameter,

and km
12 is the washout parameter. Tissue type 1 is the left

ventricular myocardium and tissue type 2 is the liver. Total
activity in the tissue is given by

Qm(t) + fm
v B(t) =

Qm
0 Um(t) + km

21V
m(t) + fm

v B(t), (3)

wherefm
v is the fraction of vasculature in the tissue.

Using the automatically segmented volumes of interest and
the reconstructed attenuation map, the attenuated unit activity
projections of each volume were calculated for each projection
ray of each projection angle. That is, the number of events
that would be detected from each volume, given a static unit
concentration of activity within the volume, was calculated
for each projection ray of each projection angle. The number
of projection rays analyzed per projection angle wasN =704
(64 transverse× 11 axial), the number of projection angles per
360◦ dataset wasJ =120, and the number of 360◦ projection
datasets wasI =90. Thus, there was a total of about 7.6 million
projection rays distributed in space and time.

For the ray at anglej and positionn, the attenuated unit
activity projections of the blood pool, body background, and
tissue typem are denoted byujn, vjn, andwm

jn, respectively.
The body background activity function is denoted byG(t) and
is assumed to underlie the blood pool and tissue volumes. The
projection equations can be expressed as

pijn =
∫ tij

tij−∆t

{
ujnB(τ) + vjnG(τ)

+
2∑

m=1

wm
jn [Qm

0 Um(τ) + km
21V

m(τ) + fm
v B(τ)]

}
dτ, (4)

wheretij is the time at which the acquisition ofpijn ends and
∆t = 0.25 sec (10 sec per 40 gantry locations). The constants

ujn, vjn, andwm
jn are pure geometrical weighting factors, and

the projection equations are linear in the unknownsQm
0 , km

21,
andfm

v . The nonlinear parameterskm
12 are contained inUm(t)

andV m(t).

Samples of the blood input and background time-activity
curves were estimated directly from the projections
using the automatically segmented volumes of interest
and the method proposed by Formiconi [10]. These
tomographically determined curves were not substituted
directly into equation (4), as this appeared to bias the kinetic
parameter estimates. Rather, the blood inputB(t) and the
backgroundG(t) were assumed to have the shapes of these
curves, and the amplitudes of these curves were estimated
along with the kinetic parameters. Rewriting equation (4) in
terms of the shapes and the amplitudes of these curves, one
obtains

pijn =
∫ tij

tij−∆t

{
ujnbB′(τ) + vjngG′(τ)

+
2∑

m=1

wm
jn [Qm

0 Um(τ) + k′m21V
′m(τ) + f ′m

v B′(τ)]

}
dτ,

(5)

where B′(t) and G′(t) are the tomographically determined
shapes of the blood input and background time-activity curves,
b andg are their amplitudes,V ′m(t) = V m(t)/b, k′m21 = bkm

21,
andf ′m

v = bfm
v . These projection equations are linear in the

unknownsQm
0 , k′m21, f ′m

v , b, andg. The nonlinear parameters
km
12 are contained inUm(t) andV ′m(t).

The criterion which was minimized by varying the model
parameters is the weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

N∑
n=1

(p∗ijn − pijn)2

Wijn
, (6)

where p∗ijn are the measured projections andWijn are
weighting factors. The weighting factors were either unity for
an unweighted fit, or the estimated variances of the projections
for a weighted fit. GivenB′(t), G′(t), and values for the
nonlinear washout parameters

λ =
[
k1
12 k2

12

]
, (7)

the values of the linear parameters

µ =
[
Q1

0 Q2
0 k′121 k′221 f ′1

v f ′2
v b g

]
(8)

which minimize the criterionχ2 can be estimated using linear
least squares. Thus,χ2 can be expressed as a function of only
the nonlinear washout parameter vectorλ [2].

A modified iterative Newton-Raphson optimization
algorithm [11, 12] was used to obtain an estimateλ̂ of the
nonlinear parameter vector. Given̂λ, an estimatêµ of the
linear parameter vector was obtained using linear least squares.
Estimates of the uptake parametersk̂m

21 and the vascular
fractionsf̂m

v were obtained aŝk′m21/b̂ andf̂ ′m
v /b̂, respectively.
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An estimate of the covariance matrix of the parameter
values λ̂, µ̂ was obtained by propagating estimates of the
variances of the measured projections through a linear
least squares approximation to the nonlinear least squares
problem [2]. The variances of the uptake parametersk̂m

21 and
the vascular fractionŝfm

v were then estimated as follows [13]:

var(k̂m
21)

(k̂m
21)2

=
var(k̂′m21)

(k̂′m21)2
+

var(b̂)

b̂2
− 2cov(k̂′m21, b̂)

k̂′m21b̂
(9)

var(f̂m
v )
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v )

(f̂ ′m
v )2

+
var(b̂)

b̂2
− 2cov(f̂ ′m

v , b̂)

f̂ ′m
v b̂

. (10)

V. RESULTS

The results of estimating kinetic parameters by minimizing
the sum of squares function in equation 6 with and without
weighting are given in Table 1.

Column a shows the results obtained for the unweighted
case. Starting with the nonlinear washout parametersλ at
zero, it took seven iterations of the modified Newton-Raphson
optimization algorithm to minimize equation (6) with the
weights Wijn set to unity. Running on a Cray J90 at the
National Energy Research Scientific Computing (NERSC)
Center, this took about 1.2 min per iteration.

Column b shows the results obtained for the weighted
case. The weightsWijn in equation (6) were determined as
follows. Ten iterations of Formiconi’s weighted least squares
method [10] were used to estimate time-activity curves for
all of the segmented volumes directly from the projections.
Starting with the weights at unity, an initial set of time-activity
curves was estimated. The projections resulting from the
initial set of curves were then used as the weights and a
second set of curves was estimated. By the third iteration,
the sum of squared changes in the projections was less than
one; by the tenth iteration, the sum of squared changes was

(a) (b)
unweighted fit weighted fit

k1
21 0.835± 0.055 0.905± 0.063

myocardium k1
12 0.178± 0.002 0.142± 0.001

f1
v 0.293± 0.025 0.346± 0.030

Q1
0 26.7± 0.6 20.5± 0.5

k2
21 1.248± 0.082 1.445± 0.100

liver k2
12 0.019± 0.0005 0.008± 0.0004

f2
v -0.057± 0.012 -0.078± 0.013

Q2
0 61.6± 0.5 66.3± 0.5

blood b 0.999± 0.065 0.973± 0.067
background g 1.002± 0.0007 1.002± 0.0006

Table 1

Results of estimating kinetic parameters directly from projections
acquired for a99mTc-teboroxime patient study. The estimated values
are shown along with their estimated uncertainties (standard deviations
indicated by±). Units for uptakekm

21 and washoutkm
12 are min−1.

Units for initial activity Qm
0 are counts/sec/25cc. The vascular

fraction fm
v , blood amplitudeb, and background amplitudeg are

dimensionless.

less than10−18. The projections obtained after the tenth
iteration were used as the weightsWijn in equation (6). Then,
starting with the nonlinear washout parametersλ at the values
obtained from the unweighted fit, it took seven iterations of the
modified Newton-Raphson optimization algorithm to minimize
equation (6). The same solution was obtained in eight iterations
when starting withλ at zero. Running on a Cray J90 at the
National Energy Research Scientific Computing (NERSC)
Center, this took about 5.4 min per iteration.

Based on the estimated uncertainties (standard deviations)
for the parameter values, the unweighted and weighted fits
appeared to yield comparable values for the myocardial
uptake parameterk1

21. Compared to the unweighted fit, the
weighted fit appeared to yield a larger value for the liver uptake
parameterk2

21, and smaller values for the washout parameters
k1
12 andk2

12. The weighted fit appeared to yield slightly less
precise estimates for the uptake parameters and slightly more
precise estimates for the washout parameters. The estimated
uncertainty for the myocardial uptake was about 7%, for both
the unweighted and the weighted fit. The estimated uncertainty
for the myocardial washout was about 1%, for both the
unweighted and the weighted fit.

Figure 3 shows the time-activity curves obtained by using
Formiconi’s method and direct kinetic parameter estimation,
as well as by conventional overlaying of cross sections of
the segmented volumes of interest on the dynamic image
reconstructions. The direct methods yielded better separation
of the activities in the volumes, compared to the conventional
method.

VI. SUMMARY

The estimation of kinetic parameters directly from
projection data is potentially useful for clinical dynamic
cardiac SPECT studies, particularly those using a single
detector system or body contouring orbits with a multi-detector
system. Implementation of this strategy requires a spatial and
temporal model of the distribution of radiopharmaceutical
within the SPECT field of view. This strategy was used to
analyze data from a99mTc-teboroxime patient study.

Automated volume of interest specification based on 4-D
edge detection applied to the dynamic image sequence
appeared to work well, and will facilitate routine application
of direct kinetic parameter estimation. Multiple local minima
were not encountered when directly estimating parameters
with a weighted fit in which modeled projections obtained
with Formiconi’s method [10] were used as the weights.
Unweighted and weighted direct fits appeared to yield
comparable values for myocardial uptake. The weighted fit
appeared to yield a slightly less precise estimate, however.

Future work in this area includes incorporating additional
physical factors such as scatter and geometric point response in
the modeling, validating the volume of interest segmentation
algorithm, parametrizing nonuniform activity concentrations
within the segmented volumes, fitting better temporal models
to the blood input and background activity functions, and
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Figure 3: Time-activity curves obtained by (a) unweighted
and (b) weighted estimation directly from the projections, and
by (c) overlaying cross sections of the segmented volumes of
interest on the dynamic image reconstructions. In (a) and (b), the
blood and background curves were obtained using Formiconi’s
method [10], and the myocardium and liver curves were obtained
using direct kinetic parameter estimation. In (a) and (b), there
appears to be good agreement between the myocardium and
liver curves and the points denoted by (+) and (×), which were
obtained using Formiconi’s method. The direct methods yielded
better separation of the activities in the volumes, compared to
the conventional method.

investigating other methods for performing weighted fits to
obtain more precise kinetic parameter estimates.
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